

Predictive Validity of ACT from 2002-07 to 2008-11

Janet Holt \& Brad White,
Illinois Education Research Council
Gerry McLaughlin
DePaul University

Association for Institutional Research Forum
May 282014
Orlando, FL

Illinois Education Research Council

Our Mission
To provide objective and reliable evidence for Illinois P-20 education policy making and program development.

Ensuring Research-Informed Education Policy for IIlinois

Academic Momentum

- In Adelman's Toolbox Revisited (2006) - noted the importance of high academic intensity in high school as related to later college completion
- Entering freshman cohort from the NELS:88 study (on-track to be freshmen in 1992)
-95% of students who had a curriculum with high academic intensity in high school, later graduated with a Bachelor's degree
-Mathematics preparation (above Algebra 2) a key indicator of pre-college momentum
-Successfully completing credits in gateway courses in college
-Less than 20 credits completed by end of first year - predicts noncompletion
- "Six is good, 9 is better, and 12 is a guarantee of momentum"

ACT as an Indicator of HS Preparation

Minimum score needed on an ACT subject-area test to indicate a 50% chance of obtaining a B or higher or about a 75% chance of obtaining a C or higher in the corresponding credit-bearing college courses

- The corresponding credit-bearing college course used to determine College Readiness Benchmark Scores:
-English benchmark \rightarrow College English Composition
-Math benchmark \rightarrow College Algebra
-Reading benchmark \rightarrow College Social Studies
-Science benchmark \rightarrow College Biology.

Relevance of ACT to College Success

- Rumblings about removing math requirements - e.g., Algebra 2 as a prerequisite for college
- Novelist and nonfiction writer, Nicholson Baker in 2013 Harper's Magazine
- emeritus professor of political science at Queens College, City University of New York, and a co-author of "Higher Education? How Colleges Are Wasting Our Money and Failing Our Kids - and What We Can Do About It.", Andrew Hacker
- A recent study of ACT/SAT optional institutions, found that ACT/SAT non-submitters were only slightly less likely to graduate and only had slightly lower GPAs - William Hiss \& Valerie Franks
- Seemingly in contradiction of Common Core

Study Goal and Research Questions

Purpose

To investigate the relationship of college readiness on the progression of students through college and college completion.

Determine the relationship of progression at different points and college completion.

Research Questions

- What is the relationship of college readiness to retention and progression for two samples of students, six-years apart at two Illinois universities?
- For the 2002 cohort, what is the relationship of college readiness and later college completion?
- Is ACT still predictive of college retention and progression, controlling for demographics, HS GPA and early college success?
- How did the prediction of college retention and progression from ACT change across the two samples?

2002 Sample

- Sample from 2002 public high school graduating class
- Selected those that enrolled in college in fall 2002 at one of two institutions in IL (one private and one public)
- Enrolled and attempting credit hours in fall 2002
- $n_{\text {public }}=, n_{\text {private }}=$
- $N=3,770$

Retention (2002 Cohort)

On Target Progression in Class Status (2002 Cohort)

Overall Graduation Rates (2002 Cohort)

Graduation Rates

Retention \& Progression by ACT Benchmark - English (2002 Cohort)

English Retention

English Progression

\rightarrow Met Missed

Graduation Rates by ACT Benchmark English (2002 Cohort)

Graduation Rates by English Benchmark

Retention \& Progression by ACT Benchmark - Math (2002 Cohort)

Graduation Rates by ACT Benchmark - Math (2002 Cohort)

Graduation Rates by Math Benchmark

Graduation Rates for those Retained in Years 2 and 3 (2002 Cohort)

Graduation Rated by Retention

Graduation Rates for those that Progressed in Class Status in Years 2 and 3 (2002 Cohort)

Graduation Rates by Progression

Predictor Model of Progression (2002 Cohort)

Sophomore Status

- English ACT BM
- Math ACT BM
- HS GPA
- Underrepresented minority
- Gender
- Earned by Attempted Credit Hours
- Fall year 1
- Spring year 1

Junior Status

- English ACT BM
- Math ACT BM
- HS GPA
- Underrepresented minority
- Gender
- Earned by Attempted Credit Hours
- Fall year 1
- Spring year 1
- Fall year 2
- Spring year 2

Earned by Attempted Credit Hours Fall Year 1 (2002 Cohort)

Progression to Sophomore Status

Earned by Attempted Credit Hours Spring Year 1 (2002 Cohort)

Progression to Sophomore Status

Earned by Attempted Credit Hours Fall Year 2 (2002 Cohort)

Progression to Junior Status

Earned by Attempted Credit Hours Spring Year 2 (2002 Cohort)

Progression to Junior Status

lnine

Logistic Regression Method

- Hierarchical Prediction
- Used Nagelkerke R^{2} to determine the strength of the model
- Does a correction to the Cox \& Snell R2 to allow the values to range up to 1 .
- ΔR^{2} calculated between each stage of predictors
- ACT benchmarks
- HS GPA
- Demographics
- Earned by Attempted credit hours in first year or two of college
- Dependent Measures = Progression to sophomore and junior status in both samples and 4 -year and 5 -year college completion in earlier sample

Prediction of Progression to Sophomore (2002 Cohort)

	b	$S E$	p	OR
English Benchmark	.870	.133	.000	2.387
Math Benchmark	.684	.086	.000	1.981
Intercept	-.886			
Nagelkerke $\mathrm{R}^{2}=.08$				

Prediction of Progression to Sophomore (2002 Cohort)

	b	SE	p	OR
English Benchmark	.772	.135	.000	2.164
Math Benchmark	.485	.090	.000	1.624
High School GPA	.679	.084	.000	1.972
Intercept	-2.950	.287	.000	.052
Nagelkerke $\mathrm{R}^{2}=.11$				

Prediction of Progression to Sophomore (2002 Cohort)

	b	SE	p	OR
English Benchmark	.699	.137	.000	2.012
Math Benchmark	.497	.096	.000	1.644
High School GPA	.614	.086	.000	1.849
Gender	-.323	.089	.000	.724
Minority	-.327	.103	.001	.721
Intercept	-2.454	.306	.000	.086

Nagelkerke $\mathrm{R}^{2}=.12$

Prediction of Progression to Sophomore (2002 Cohort)

	b	SE	p	OR
English Benchmark	.732	.174	.000	2.080
Math Benchmark	.741	.129	.000	2.098
High School GPA	.284	.113	.012	1.328
Gender	-.332	.118	.005	.718
Minority	-.277	.135	.041	.758
Earned by attempted Fall Year 1				
Low vs High	-2.926	.344	.000	.054
Mid-low vs High	-2.397	.216	.000	.091
Mid-High vs High	-1.523	.251	.000	.218
Earned by attempted Spring Year				
Low vs High	-4.397	.296	.000	.012
Mid-low vs High	-2.301	.170	.000	.100
Mid-High vs High	-1.683	.247	.000	.186
Intercept	-.255	.397	.521	.775

Prediction of Progression to Junior (2002 Cohort)

	b	SE	p	OR
English Benchmark	.696	.140	.000	2.005
Math Benchmark	.776	.086	.000	2.173
Intercept	-1.246	.129	.000	.288
Nagelkerke $\mathrm{R}^{2}=.08$				

Prediction of Progression to Junior (2002 Cohort)

	b	$S E$	p	OR
English Benchmark	.577	.143	.000	1.780
Math Benchmark	.550	.090	.000	1.734
High School GPA	.807	.085	.000	2.242
Intercept	-3.718	.298	.000	.024

Nagelkerke $\mathrm{R}^{2}=.12$

Prediction of Progression to Junior (2002 Cohort)

	b	SE	p	OR
English Benchmark	.493	.145	.001	1.637
Math Benchmark	.531	.096	.000	1.700
High School GPA	.756	.087	.000	2.131
Gender	-.249	.088	.005	.779
Minority	-.379	.105	.000	.685
Intercept	-3.263	.315	.000	.038
Nagelkerke $\mathrm{R}^{2}=.13$				

Prediction of Progression to Junior (2002 Cohort)

	b	SE	p	OR
English Benchmark	.336	.166	.043	1.400
Math Benchmark	.648	.112	.000	1.911
High School GPA	.510	.100	.000	1.665
Gender	-.188	.104	.069	.828
Minority	-.343	.122	.005	.708
Earned by attempted Fall Year 1				
Low vs High	-2.752	.404	.000	.064
Mid-low vs High	-1.962	.228	.000	.141
Mid-High vs High	-.873	.240	.000	.418
Earned by attempted Spring Year	1			
Low vs High	-3.287	.266	.000	.037
Mid-low vs High	-1.711	.174	.000	.181
Mid-High vs High	-.927	.239	.000	.396
Intercept	-1.550	.360	.000	.212

Prediction of 4-Year Graduation Rate (2002 Cohort)

	b	SE	p	OR
English Benchmark	.749	.165	.000	2.115
Math Benchmark	.696	.093	.000	2.005
Intercept	-1.848	.155	.000	.158
Nagelkerke $\mathrm{R}^{2}=.06$				

Prediction of 4-Year Graduation Rate (2002 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	.628	.167	.000	1.874
Math Benchmark	.464	.098	.000	1.591
High School GPA	.810	.093	.000	2.249
Intercept	-4.347	.333	.000	.013

Nagelkerke $\mathrm{R}^{2}=.10$

Prediction of 4-Year Graduation Rate (2002 Cohort)

	b	SE	p	OR
English Benchmark	.509	.170	.003	1.664
Math Benchmark	.489	.104	.000	1.630
High School GPA	.715	.095	.000	2.044
Gender	-.560	.118	.000	.571
Minority	-.535	.095	.000	.586
Intercept	-3.586	.351	.000	.028

Nagelkerke $\mathrm{R}^{2}=.13$

4-Year Graduation Rate

	b	$S E$	p	OR
English Benchmark	.259	.195	.183	1.296
Math Benchmark	.543	.121	.000	1.721
High School GPA	.311	.111	.005	1.365
Intercept	-.967	.409	.018	.380

Nagelkerke ${ }^{2}=.45$

Prediction of 5-Year Graduation Rate (2002 Cohort)

	b	$S E$	p	OR
English Benchmark	.693	.127	.000	1.999
Math Benchmark	.581	.085	.000	1.789
Intercept	-.594	.115	.000	.552
Nagelkerke $\mathrm{R}^{2}=.06$				

Prediction of 5-Year Graduation Rate (2002 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	.592	.129	.000	1.808
Math Benchmark	.390	.089	.000	1.477
High School GPA	.652	.083	.000	1.919
Intercept	-2.566	.278	.000	.077

Nagelkerke $\mathrm{R}^{2}=.09$

Prediction of 5-Year Graduation Rate (2002 Cohort)

	b	$S E$	p	OR
English Benchmark	.476	.132	.000	1.610
Math Benchmark	.304	.095	.001	1.356
High School GPA	.615	.085	.000	1.849
Gender	-.136	.088	.121	.873
Minority	-.513	.101	.000	.599
Intercept	-2.101	.299	.000	.122

Nagelkerke $\mathrm{R}^{2}=.10$

Prediction of 5-Year Graduation Rate (2002 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	.263	.175	.134	1.300
Math Benchmark	.371	.128	.004	1.449
High School GPA	.262	.113	.020	1.300
Intercept	.782	.406	.054	2.187
Nagelkerke $\mathrm{R}^{2}=.57$				

Mid vs High	-1.335	.138	.000	.263
Mid-High vs High	-.964	.244	.000	.381
Intercept	.782	.406	.054	2.187

2008 Study Sample

- Students who initially enrolled (attempted credit hours) as first-time freshman
- Students were pursuing a bachelor's degree during the fall semester of 2008-09
- Students had to be enrolled and attempting credit hours
- This sample was not a high school cohort but a sample of those enrolled at the two institutions

Retention (2008 Cohort)

On Target Progression in Class Status (2008 Cohort)

Retention and Progression by ACT Benchmark - English (2008 Cohort)

Retention and Progression by ACT Benchmark - Math (2008 Cohort)

/ine

Predictors of Progression (2008 Cohort)

Sophomore Status

- English ACT BM
- Math ACT BM
- HS GPA
- Underrepresented minority
- Gender
- Earned by Attempted Credit Hours
- Fall year 1
- Spring year 1

Junior Status

- English ACT BM
- Math ACT BM
- HS GPA
- Underrepresented minority
- Gender
- Earned by Attempted Credit Hours
- Fall year 1
- Spring year 1
- Fall year 2

Earned by Attempted Credit Hours Fall Year 1 (2008 Cohort)

```
---------------- Not retained or Less than
```

Category	\%	n
Not retalned or Less than Sophomare	17.5	671
- Sophamara	82.5	4119
Total	100.0	4990

Fall Year 1 Credtis Eamed Ratlo

Earned by Attempted Credit Hours Spring Year 1 (2008 Cohort)

Categary	\%	n
- Not retained or Less than	12.5	569
Sophomore		
- Sophomore	87.5	4114
Total	100.0	4703

Earned by Attempted Credit Hours Fall Year 2 (2008 Cohort)

Category	\%	17
Not Retained or Less than Junlor	17.7	756
\square Junlart	82.3	3518
Total	100.0	4274

Fall Year 2 Credits Eamed Ratlo

Prediction of Progression to Sophomore (2008 Cohort)

	b	$S E$	p	OR
English Benchmark	1.571	.132	.000	4.811
Math Benchmark	1.086	.074	.000	2.963
Intercept	-1.590	.126	.000	204
Nagelkerke $\mathrm{R}^{2}=.18$				

Prediction of Progression to Sophomore (2008 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	1.178	.141	.000	3.248
Math Benchmark	.759	.079	.000	2.136
High School GPA	1.732	.089	.000	5.654
Intercept	-6.716	.305	.000	.001

Nagelkerke $\mathrm{R}^{2}=.31$

Prediction of Progression to Sophomore (2008 Cohort)

	b	SE	p	OR
English Benchmark	.979	.145	.000	2.661
Math Benchmark	.646	.083	.000	1.907
High School GPA	1.700	.091	.000	5.473
Gender	.089	.081	.270	1.093
Minority	-.774	.089	.000	.461
Intercept	-6.204	.313	.000	.002

Nagelkerke $\mathrm{R}^{2}=.33$

Prediction of Progression to Sophomore (2008 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	1.172	.165	.000	3.228
Math Benchmark	.960	.103	.000	2.611
High School GPA	1.191	.110	.000	3.291
Gender	.030	.099	.760	.970
Minority	-.664	.108	.000	.515
Earned by attempted Fall Year 1				

Low vs High	$\mathbf{- 2 . 5 3 1}$.157	.000	.080
Earned by attempted Spring Year 1				

Low vs High	-3.866	.231	.000	.021
Mid-low vs High	-2.410	.156	.000	.090
Intercept	-3.928	.372	.000	.020

[^0]
Prediction of Progression to Junior 2008 Cohort

	b	SE	p	OR
English Benchmark	1.608	.145	.000	4.991
Math Benchmark	.863	.072	.000	2.371
Intercept	-1.902	.140	.000	.149

Nagelkerke $R^{2}=.14$

Prediction of Progression to Junior 2008 Cohort

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	1.206	.154	.000	3.341
Math Benchmark	.504	.078	.000	1.655
High School GPA	$\mathbf{1 . 7 6 4}$.086	.000	5.837
Intercept	-7.164	.306	.000	.001

Nagelkerke $\mathrm{R}^{2}=.29$

Prediction of Progression to Junior (2008 Cohort)

	\boldsymbol{b}	SE	\boldsymbol{p}	OR
English Benchmark	1.034	.157	.000	2.813
Math Benchmark	.426	.082	.000	1.530
High School GPA	1.722	.088	.000	5.597
Gender	.157	.077	.043	1.170
Minority	-.654	.090	.000	.520
Intercept	-6.743	.312	.000	.001

Nagelkerke $\mathrm{R}^{2}=.30$

Prediction of Progression to Junior (2008 Cohort)

	b	SE	p	OR
English Benchmark	1.138	. 180	. 000	3.120
Math Benchmark	. 601	. 103	. 000	1.823
High School GPA	1.293	. 112	. 000	3.645
Gender	. 027	. 098	. 780	1.028
Minority	-. 435	. 112	. 000	. 647
Earned by attempted Fall Year 1				
Low vs High	-1.784	. 170	. 000	. 168
Earned by attempted Spring Year 1				
Low vs High	-2.966	. 328	. 000	. 052
Mid-low vs High	-1.636	. 166	. 000	. 195
Earned by attempted Fall Year 2				
Low vs High	-3.094	. 221	. 000	. 020
Mid-low vs High	-1.181	. 099	. 000	. 307
Intercept	-4.188	. 390	. 000	. 015

Summary of Major Findings

- Fairly constant retention and progression values across the years
- ACT benchmarks more related to progression and completion than to retention
- Meeting ACT English and math benchmarks very related to progression to sophomore and junior status in both samples
- Once HS GPA, and measure of college course success in years $1 \& 2$ added in model, both English and math benchmarks still significant predictors of progression to sophomore status in both samples.
- Once HS GPA, and measure of college course success in years $1 \& 2$ added in model, only math benchmark still significant predictor of progression to junior status and college completion in early sample
- Once HS GPA, and measure of college course success in years $1 \& 2$ added in model, both English and math benchmarks still significant predictor of progression to junior status in more recent sample

Concluding Remarks

- Yes, college readiness still as important in recent sample as in earlier sample!
- Meeting English benchmark more important predictor of later progression in more recent sample
- In all models for both samples, meeting math benchmark is an important predictor of future success
- High school preparation matters!

Policy Implications

- Progression is key
-CCA's "15 to finish" initiative highlights the importance of taking enough credit hours to have on-target progression
-Early accumulation of credits via dual credit or AP will help students progress on target
- Common Core in ELA and math should help to ensure students are college ready and should help to increase college success rates
- ACT or other achievement tests - still important measures of future success, as well as providing key information on college readiness

Illinois Education Research Council

Southern Illinois University Edwardsville

Janet Holt, Executive Director
janholt@siue.edu
866-799-IERC (4372)

http://wwww.siue.edulierc/

References

- Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college. Washington, D.C.: U.S. Department of Education. Retrieved from: http://www2.ed.gov/rschstat/research/pubs/toolboxrevisit/toolbox.pdf
- Baker, N. (2013, September) Wrong answer: The case against Algebra II. Harper's Magazine. Retrieved from: http://harpers.org/archive/2013/09/wrong-answer/
- Hacker, A. (2012, July). Is algebra necessary? The New York Times. Retrieved from:
http://www.nytimes.com/2012/07/29/opinion/sunday/isalgebranecessary.html?pagewanted=all\& r=0
- Hiss, W. \& Franks, V. (2014, February). Defining promise: Optional standardized testing policies in American college and university admissions. National Association for College Admissions Counseling. Retrieved from:
http://www.nacacnet.org/research/research-data/naca-research

[^0]: Nagelkerke $\mathrm{R}^{2}=.60$

